
Modules

Modules

A module is a collection of functions that we can use to do more powerful things with our

Python programs.

Lots of modules exist, written by other developers.

You can use a module without needing to understand what it is doing behind the scenes!

You can also write your own modules.

Using a Module

Import a module:

import modulename

Use a module function:

modulename.functionname(param1, param2, etc...)

Example: math Module

The math module contains advanced mathematical functions.

import math
print(math.sin(0.5))

https://docs.python.org/3/library/math.html

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html

Exercise: Using math

Look at the documentation for the math module here:

https://docs.python.org/3/library/math.html

Write a program that takes an angle in degrees, converts it to radians, and outputs its

sine, cosine, and tangent.

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html

Exercise: Using math

import math

angle = float(input(“Enter an angle in degrees: “))
radangle = math.radians(angle)

print(math.sin(radangle))
print(math.cos(radangle))
print(math.tan(radangle))

Importing Parts of a Module

Note that each function is called as part of its module:

math.sin(radangle)

We can choose to import specific functions, directly into our namespace:

from modulename import functionname

Importing Parts of a Module

from math import sin, cos, tan, radians

angle = float(input(“Enter an angle in degrees: “))
radangle = radians(angle)

print(sin(radangle))
print(cos(radangle))
print(tan(radangle))

Directly Importing an Entire Module

We can directly import an entire module into our namespace:

from math import *

...but this may have unintended results!

Directly Importing an Entire Module

from math import *

a = 1
b = 2
c = 3
d = 4

print(a)
print(b)
print(c)
print(d)
print(e)

Writing Your Own Modules

To create your own module, write the functions and variables that make up your module

into a program and save it as a regular Python (.py) script.

You can then import the module into another program as normal, using

import filename

Note that the .py extension is not part of the module name!

Writing Your Own Modules

my_module.py:

def my_cool_function():
 print(“Hello from the cool function!”)

my_program.py:

import my_module
my_module.my_cool_function()

Exercise: Fun with Modules

The turtle module is a fun introduction to

programming and modules. Move a ‘turtle’ around

the screen, tracing a path!

https://docs.python.org/3/library/turtle.html

First, in the interpreter:

import turtle
turtle.home()

Try out various commands!

Then, write a full program to make the turtle do

something. You’ll want to use an infinite loop:

import turtle

while True:
 turtle.forward(50)
 turtle.right(45)

https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html

Summary

● We can write our own functions, to make modular, reusable code.

● We can use functions provided by other developers in the form of modules.

● Modules let us write advanced programs, without needing to reinvent the wheel

ourselves!

How do we structure truly complex programs and data structures?

