
Making Decisions

Boolean Data Type

A boolean variable is either True or False.

loggedin = True

administrator = False

Boolean Operators - Comparison

● == 42 == 42 (Equality - do not confuse with = !)
● != 10 != 12 (Inequality)
● < 2 < 3 (Less than)

“apple” < “banana”
● > 4 > 3 (Greater than)

“dog” > “cat”
● <= 5 <= 5 (Less than or equal to)
● >= 6 >= 6 (Greater than or equal to)

Boolean Operators - Comparison

● == 42 == 42 (Equality - do not confuse with = !)
● != 10 != 12 (Inequality)
● < 2 < 3 (Less than)

“apple” < “banana”
● > 4 > 3 (Greater than)

“dog” > “cat”
● <= 5 <= 5 (Less than or equal to)
● >= 6 >= 6 (Greater than or equal to)

Note how comparison on strings compares alphabetically!
12 < 2 == False but “12” < “2” == True

Boolean Operators - Logic

● not not False
● and True and True
● or True and False

Boolean Operators - Logic

not

Input Output

False True

True False

and

Input 1 Input 2 Output

False False False

False True False

True False False

True True True

or

Input 1 Input 2 Output

False False False

False True True

True False True

True True True

Boolean Expressions

Can construct boolean expressions using these operators, like with numeric and
string expressions:

name == “Alex”

age >= 18 or loggedin

Exercise: Writing Boolean Expressions

Say we have the following variables describing an item of food:

colour Colour of food colour = “red”
category Category of food category = “fruit”
age Days since purchase age = 2

Write a boolean expression that is True for all food items that are not vegetables, are

either brown or yellow, and are less than a week old; and False for everything else.

Write a program with these variables that outputs the value of your expression. Try

different combinations of values for the variables to test it works.

Exercise: Writing Boolean Expressions

Write a boolean expression that is True for all food items that are not vegetables, are

either brown or yellow, and are less than a week old; and False for everything else.

category != “vegetable” and (colour == “brown” or colour
== “yellow”) and age < 7

If Statements

if boolean-expression : statement

● The boolean expression is evaluated.

● If it is True, then the statement is run.

● If it is False, then the statement is not run.

if age < 18 : print(“You are not old enough!”)

Exercise: Secret Word

Write a program that asks the user for a secret word of your choice. If they enter the

correct secret word, then they are shown a message.

Exercise: Secret Word

Write a program that asks the user for a secret word of your choice. If they enter the

correct secret word, then they are shown a message.

word = input(“Enter the secret word: “)
if word == “swordfish” : print(“Correct!”)

Code Blocks

We probably want to run more than one statement if the condition is successful!

We use indentation to denote blocks of code.

● Indented code after a statement ending with a colon forms a block.

● Everything indented to the same level is part of the block.

● The block ends once the indentation ends.

● You can use however much indentation you want, but the standard in Python 3 is

four spaces. The important thing is to be consistent.

Block If Statement

word = input(“Enter the secret word: “)
if word == “swordfish”:
 print(“Correct!”)
 print(“Well done for knowing the secret word.”)
print(“Goodbye”)

The first two print statements are part of the block. The last one is not, and will run

whatever happens!

We will usually write our if statements in this block form.

Else

if boolean-expression:
 ... do stuff ...
else:
 ... do stuff ...

The else block is run if the boolean expression is false.

i.e. Exactly one of the two blocks will be run.

Exercise: Secret Word, Again

Write a program that asks the user for a secret word of your choice.

● If they enter the correct secret word, then they are shown a message consisting of

several lines.

● If they enter the wrong word, then they are shown a warning message.

Exercise: Secret Word, Again

word = input(“Enter the secret word: “)
if word == “swordfish”:
 print(“Correct!”)
 print(“Well done for knowing the secret word.”)
else:
 print(“That’s not the right word!”)

Elif

if boolean-expression:
 ... do stuff ...
elif boolean-expression:
 ... do other stuff ...
elif boolean-expression:
 ... do some other stuff ...
else:
 ... do some other other stuff ...

We can have as many elifs as we need. The else must come last. The
interpreter will try each expression in turn until one of them is True.

Elif

shape = input(“Enter a shape: “)
if shape == “triangle”:
 print(“Has three sides.”)
elif shape == “square” or shape == “rectangle”:
 print(“Has four sides.”)
elif shape == “pentagon”:
 print(“Has five sides.”)
elif shape == “hexagon”:
 print(“Has six sides.”)
else:
 print(“I don’t know that shape!”)

Nested Blocks

We can nest blocks inside other blocks using multiple levels of indentation.

age = int(input(“Enter your age: “))
if age >= 18:
 word = input(“Enter the secret word: “)
 if word == “swordfish”:
 print(“Welcome!”)
 else:
 print(“That’s not the secret word!”)
else:
 print(“You are not old enough!”)

Exercise: Quiz Program

Based on what you have learnt about decision making, write a simple quiz program.

The program should ask the user some questions, and the user should input their

responses.

The program should tell the user whether they answered correctly.

The program could also keep a score of how many questions were answered correctly, to

output at the end.

Try various types of questions to make sure you fully understand how boolean

expressions, if, else, and elif work!

Short Circuit Evaluation

Consider a boolean expression using logical and:

x and y

How would we expect this to be evaluated?

Short Circuit Evaluation

Consider a boolean expression using logical and:

x and y

How would we expect this to be evaluated?

● Evaluate the boolean expression x.

● Evaluate the boolean expression y.

● Finally, evaluate the boolean expression x and y.

But what if x is False?

Short Circuit Evaluation

x and y

If x is False, then the full expression must evaluated to False!

So the interpreter does not both evaluating y in this case, because it does not need to.

A similar thing happens for x or y: if x is True, then there is no need to evaluate y.

This is called short circuit evaluation - the latter expression has been short-circuited.

Short Circuit Evaluation - Example Usage

if a / b == 4:
 print(“something”)

Not safe! What if b is 0?

Short Circuit Evaluation - Example Usage

if a / b == 4:
 print(“something”)

Not safe! What if b is 0?

if b != 0:
 if a / b == 4:
 print(“something”)

This is safe, but can we avoid the nesting?

Short Circuit Evaluation - Example Usage

Use short circuit evaluation!

if b != 0 and a / b == 4:
 print(“something”)

The first expression can short-circuit the second, to avoid division by zero.

A useful feature to be aware of! But watch out for it cropping up where you don’t expect

it.

